Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
1.
Biochemistry (Mosc) ; 89(1): 65-83, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38467546

RESUMO

According to the data from the World Health Organization, about 800 million of the world population had contracted coronavirus infection caused by SARS-CoV-2 by mid-2023. Properties of this virus have allowed it to circulate in the human population for a long time, evolving defense mechanisms against the host immune system. Severity of the disease depends largely on the degree of activation of the systemic immune response, including overstimulation of macrophages and monocytes, cytokine production, and triggering of adaptive T- and B-cell responses, while SARS-CoV-2 evades the immune system actions. In this review, we discuss immune responses triggered in response to the SARS-CoV-2 virus entry into the cell and malfunctions of the immune system that lead to the development of severe disease.


Assuntos
COVID-19 , Humanos , SARS-CoV-2
2.
Transl Oncol ; 44: 101930, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38520912

RESUMO

Tumor employs non-cancerous cells to gain beneficial features that promote growth and survival of cancer cells. Despite intensive research in the area of tumor microenvironment, there is still a lack of reliable and reproducible in vitro model for tumor and tumor-microenvironment cell interaction studies. Herein we report the successful development of a heterogeneous cancer-stroma sphere (CSS) model composed of prostate adenocarcinoma PC3 cells and immortalized mesenchymal stem cells (MSC). The CSS model demonstrated a structured spatial layout of the cells, with stromal cells concentrated at the center of the spheres and tumor cells located on the periphery. Significant increase in the levels of VEGFA, IL-10, and IL1a has been detected in the conditioned media of CSS as compared to PC3 spheres. Single cell RNA sequencing data revealed that VEGFA was secreted by MSC cells within heterogeneous spheroids. Enhanced expression of extracellular membrane (ECM) proteins was also shown for CSS-derived MSCs. Furthermore, we demonstrated that the multicellular architecture altered cancer cell response to chemotherapeutic agents: the inhibition of sphere formation by topotecan was 74.92 ± 4.56 % for PC3 spheres and 45.95 ± 7.84 % for CSS spheres (p < 0.01), docetaxel showed 37,51± 20,88 % and 15,67± 14,08 % inhibition, respectively (p < 0.05). Thus, CSS present an effective in vitro model for examining the extracellular matrix composition and cell-to-cell interactions within the tumor, as well as for evaluating the antitumor activity of drugs.

3.
Crit Rev Oncol Hematol ; 196: 104297, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38350543

RESUMO

The worldwide incidence rate of cancer of unknown primary (CUP) reaches 5% (Kang et al, 2021; Lee, Sanoff, 2020; Yang et al, 2022). CUP has an alarmingly high mortality rate, with 84% of patients succumbing within the first year following diagnosis (Registration and Service, 2018). Under normal circumstances, tumor cell metastasis follows the «seed and soil¼ hypothesis, displaying a tissue-specific pattern of cancer cell homing behavior based on the microenvironment composition of secondary organs. In this study, we questioned whether seed and soil concept applies to CUP, and whether the pattern of tumor and metastasis manifestations for cancer of known primary (CKP) can be used to inform diagnostic strategies for CUP. We compared data from metastatic and primary CUP foci to the metastasis patterns observed in CKP. Furthermore, we evaluated several techniques for identifying the tissue-of-origin (TOO) in CUP profiling, including DNA, RNA, and epigenetic TOO techniques.


Assuntos
Neoplasias Primárias Desconhecidas , Animais , Humanos , Neoplasias Primárias Desconhecidas/diagnóstico , Neoplasias Primárias Desconhecidas/epidemiologia , Solo , Incidência , Microambiente Tumoral
4.
Int J Mol Sci ; 25(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38203812

RESUMO

The improvement of human living conditions has led to an increase in average life expectancy, creating a new social and medical problem-aging, which diminishes the overall quality of human life. The aging process of the body begins with the activation of effector signaling pathways of aging in cells, resulting in the loss of their normal functions and deleterious effects on the microenvironment. This, in turn, leads to chronic inflammation and similar transformations in neighboring cells. The cumulative retention of these senescent cells over a prolonged period results in the deterioration of tissues and organs, ultimately leading to a reduced quality of life and an elevated risk of mortality. Among the most promising methods for addressing aging and age-related illnesses are pharmacological, genetic, and cellular therapies. Elevating the activity of aging-suppressing genes, employing specific groups of native and genetically modified cells, and utilizing senolytic medications may offer the potential to delay aging and age-related ailments over the long term. This review explores strategies and advancements in the field of anti-aging therapies currently under investigation, with a particular emphasis on gene therapy involving adeno-associated vectors and cell-based therapeutic approaches.


Assuntos
Envelhecimento , Qualidade de Vida , Adolescente , Humanos , Envelhecimento/genética , Expectativa de Vida , Terapia Baseada em Transplante de Células e Tecidos , Terapia Genética
5.
J Pers Med ; 13(11)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38003936

RESUMO

Mesenchymal stem cells (MSCs) are pivotal players in tissue repair and hold great promise as cell therapeutic agents for regenerative medicine. Additionally, they play a significant role in the development of various human diseases. Studies on MSC biology have encountered a limiting property of these cells, which includes a low number of passages and a decrease in differentiation potential during in vitro culture. Although common methods of immortalization through gene manipulations of cells are well established, the resulting MSCs vary in differentiation potential compared to primary cells and eventually undergo senescence. This study aimed to immortalize primary adipose-derived MSCs by overexpressing human telomerase reverse transcriptase (hTERT) gene combined with a knockdown of TP53. The research demonstrated that immortalized MSCs maintained a stable level of differentiation into osteogenic and chondrogenic lineages during 30 passages, while also exhibiting an increase in cell proliferation rate and differentiation potential towards the adipogenic lineage. Long-term culture of immortalized cells did not alter cell morphology and self-renewal potential. Consequently, a genetically stable line of immortalized adipose-derived MSCs (iMSCs) was established.

6.
Mol Biol Res Commun ; 12(4): 139-148, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37886737

RESUMO

The most often diagnosed and fatal malignancy in women is breast cancer. The International Agency for Research on Cancer (IARC) estimates that there are 2.26 million new cases of cancer in 2020. Adoptive cell therapy using T cells with chimeric antigen receptor shows potential for the treatment of solid tumors, such as breast cancer. In this work the effectiveness of CAR-T cells against monolayer and three-dimensional bioprinted tumor-like structures made of modified MCF-7 breast cancer cells was assessed. The cytokine profile of supernatants after co-cultivation of MCF-7 tumor cell models with CAR-T cells was also measured to reveal the inflammatory background associated with this interaction.

7.
J Biomol Struct Dyn ; : 1-17, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37750540

RESUMO

The emergence of the new SARS-CoV-2 variants has led to major concern regarding the efficacy of approved vaccines. Nucleocapsid is a conserved structural protein essential for replication of the virus. This study focuses on identifying conserved epitopes on the nucleocapsid (N) protein of SARS-CoV-2. Using 510 unique amino acid sequences of SARS-CoV-2 N protein, two peptides (193 and 215 aa) with 90% conservancy were selected for T cell epitope prediction. Three immunogenic peptides containing multiple T cell epitopes were identified which were devoid of autoimmune and allergic immune response. These peptides were also conserved (100%) in recent Omicron variants reported in Jan-August 2023. HLA analysis reveals that these peptides are predicted as binding to large number of HLA alleles and 71-90% population coverage in six continents. Identified peptides displayed good binding score with both HLA class I and HLA class II molecules in the docking study. Also, a vaccine construct docked with TLR-4 receptor displays strong interaction with 20 hydrogen bonds and molecular simulation analysis reveals that docked complex are stable. Additionally, the immunogenicity of these N protein peptides was confirmed using SARS-CoV-2 convalescent serum samples. We conclude that the identified N protein peptides contain highly conserved and antigenic epitopes which could be used as a target for the future vaccine development against SARS-CoV-2.Communicated by Ramaswamy H. Sarma.

8.
Biochemistry (Mosc) ; 88(7): 979-994, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37751868

RESUMO

Cancer stem cells (CSCs), their properties and interaction with microenvironment are of interest in modern medicine and biology. There are many studies on the emergence of CSCs and their involvement in tumor pathogenesis. The most important property inherent to CSCs is their stemness. Stemness combines ability of the cell to maintain its pluripotency, give rise to differentiated cells, and interact with environment to maintain a balance between dormancy, proliferation, and regeneration. While adult stem cells exhibit these properties by participating in tissue homeostasis, CSCs behave as their malignant equivalents. High tumor resistance to therapy, ability to differentiate, activate angiogenesis and metastasis arise precisely due to the stemness of CSCs. These cells can be used as a target for therapy of different types of cancer. Laboratory models are needed to study cancer biology and find new therapeutic strategies. A promising direction is three-dimensional tumor models or spheroids. Such models exhibit properties resembling stemness in a natural tumor. By modifying spheroids, it becomes possible to investigate the effect of therapy on CSCs, thus contributing to the development of anti-tumor drug test systems. The review examines the niche of CSCs, the possibility of their study using three-dimensional spheroids, and existing markers for assessing stemness of CSCs.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Neoplasias/metabolismo , Antineoplásicos/farmacologia , Diferenciação Celular , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral , Proliferação de Células
9.
Int J Mol Sci ; 24(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37762045

RESUMO

Spinal muscular atrophy (SMA) is a rare autosomal recessive neuromuscular disease that is characterized by progressive muscle atrophy (degeneration), including skeletal muscles in charge of the ability to move. SMA is caused by defects in the SMN1 gene (Survival of Motor Neuron 1) which encodes a protein crucial for the survival and functionality of neuron cells called motor neurons. Decreased level of functioning SMN protein leads to progressive degeneration of alpha-motor neurons performing muscular motility. Over the past decade, many strategies directed for SMN-level-restoration emerged, such as gene replacement therapy (GRT), CRISPR/Cas9-based gene editing, usage of antisense oligonucleotides and small-molecule modulators, and all have been showing their perspectives in SMA therapy. In this review, modern SMA therapy strategies are described, making it a valuable resource for researchers, clinicians and everyone interested in the progress of therapy of this serious disorder.


Assuntos
Atrofia Muscular Espinal , Humanos , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Neurônios Motores , Edição de Genes , Genes Reguladores , Terapia Genética , Doenças Raras
10.
Biomedicines ; 11(7)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37509661

RESUMO

The biosafety of gene therapy remains a crucial issue for both the direct and cell-mediated delivery of recombinant cDNA encoding biologically active molecules for the pathogenetic correction of congenital or acquired disorders. The diversity of vector systems and cell carriers for the delivery of therapeutic genes revealed the difficulty of developing and implementing a safe and effective drug containing artificial genetic material for the treatment of human diseases in practical medicine. Therefore, in this study we assessed changes in the transcriptome and secretome of umbilical cord blood mononuclear cells (UCB-MCs) genetically modified using adenoviral vector (Ad5) carrying cDNA encoding human vascular endothelial growth factor (VEGF165) or reporter green fluorescent protein (GFP). A preliminary analysis of UCB-MCs transduced with Ad5-VEGF165 and Ad5-GFP with MOI of 10 showed efficient transgene expression in gene-modified UCB-MCs at mRNA and protein levels. The whole transcriptome sequencing of native UCB-MCs, UCB-MC+Ad5-VEGF165, and UCB-MC+Ad5-GFP demonstrated individual sample variability rather than the effect of Ad5 or the expression of recombinant vegf165 on UCB-MC transcriptomes. A multiplex secretome analysis indicated that neither the transduction of UCB-MCs with Ad5-GFP nor with Ad5-VEGF165 affects the secretion of the studied cytokines, chemokines, and growth factors by gene-modified cells. Here, we show that UCB-MCs transduced with Ad5 carrying cDNA encoding human VEGF165 efficiently express transgenes and preserve transcriptome and secretome patterns. This data demonstrates the biosafety of using UCB-MCs as cell carriers of therapeutic genes.

11.
Int J Mol Sci ; 24(14)2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37511298

RESUMO

Antibiotics inhibit breast cancer stem cells (CSCs) by suppressing mitochondrial biogenesis. However, the effectiveness of antibiotics in clinical settings is inconsistent. This inconsistency raises the question of whether the tumor microenvironment, particularly hypoxia, plays a role in the response to antibiotics. Therefore, the goal of this study was to evaluate the effectiveness of five commonly used antibiotics for inhibiting CSCs under hypoxia using an MCF-7 cell line model. We assessed the number of CSCs through the mammosphere formation assay and aldehyde dehydrogenase (ALDH)-bright cell count. Additionally, we examined the impact of antibiotics on the mitochondrial stress response and membrane potential. Furthermore, we analyzed the levels of proteins associated with therapeutic resistance. There was no significant difference in the number of CSCs between cells cultured under normoxic and hypoxic conditions. However, hypoxia did affect the rate of CSC inhibition by antibiotics. Specifically, azithromycin was unable to inhibit sphere formation in hypoxia. Erythromycin and doxycycline did not reduce the ratio of ALDH-bright cells, despite decreasing the number of mammospheres. Furthermore, treatment with chloramphenicol, doxycycline, and tetracycline led to the overexpression of the breast cancer resistance protein. Our findings suggest that hypoxia may weaken the inhibitory effects of antibiotics on the breast cancer model.


Assuntos
Antibacterianos , Neoplasias da Mama , Humanos , Feminino , Células MCF-7 , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Doxiciclina/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Neoplasias da Mama/metabolismo , Proteínas de Neoplasias/metabolismo , Aldeído Desidrogenase/metabolismo , Hipóxia/metabolismo , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral
12.
Curr Issues Mol Biol ; 45(3): 2431-2443, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36975528

RESUMO

Extracellular vesicles (EVs) are promising therapeutic instruments and vectors for therapeutics delivery. In order to increase the yield of EVs, a method of inducing EVs release using cytochalasin B is being actively developed. In this work, we compared the yield of naturally occurring extracellular vesicles and cytochalasin B-induced membrane vesicles (CIMVs) from mesenchymal stem cells (MSCs). In order to maintain accuracy in the comparative analysis, the same culture was used for the isolation of EVs and CIMVs: conditioned medium was used for EVs isolation and cells were harvested for CIMVs production. The pellets obtained after centrifugation 2300× g, 10,000× g and 100,000× g were analyzed using scanning electron microscopy analysis (SEM), flow cytometry, the bicinchoninic acid assay, dynamic light scattering (DLS), and nanoparticle tracking analysis (NTA). We found that the use of cytochalasin B treatment and vortexing resulted in the production of a more homogeneous population of membrane vesicles with a median diameter greater than that of EVs. We found that EVs-like particles remained in the FBS, despite overnight ultracentrifugation, which introduced a significant inaccuracy in the calculation of the EVs yield. Therefore, we cultivated cells in a serum-free medium for the subsequent isolation of EVs. We observed that the number of CIMVs significantly exceeded the number of EVs after each step of centrifugation (2300× g, 10,000× g and 100,000× g) by up to 5, 9, and 20 times, respectively.

13.
Cells ; 12(5)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36899921

RESUMO

Despite scientific discoveries in the field of gene and cell therapy, some diseases still have no effective treatment. Advances in genetic engineering methods have enabled the development of effective gene therapy methods for various diseases based on adeno-associated viruses (AAVs). Today, many AAV-based gene therapy medications are being investigated in preclinical and clinical trials, and new ones are appearing on the market. In this article, we present a review of AAV discovery, properties, different serotypes, and tropism, and a following detailed explanation of their uses in gene therapy for disease of different organs and systems.


Assuntos
Terapia Genética , Vetores Genéticos , Sorogrupo , Terapia Genética/métodos , Engenharia Genética , Tropismo , Dependovirus/genética
14.
Int J Mol Sci ; 24(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36901831

RESUMO

Stimulating the process of angiogenesis in treating ischemia-related diseases is an urgent task for modern medicine, which can be achieved through the use of different cell types. Umbilical cord blood (UCB) continues to be one of the attractive cell sources for transplantation. The goal of this study was to investigate the role and therapeutic potential of gene-engineered umbilical cord blood mononuclear cells (UCB-MC) as a forward-looking strategy for the activation of angiogenesis. Adenovirus constructs Ad-VEGF, Ad-FGF2, Ad-SDF1α, and Ad-EGFP were synthesized and used for cell modification. UCB-MCs were isolated from UCB and transduced with adenoviral vectors. As part of our in vitro experiments, we evaluated the efficiency of transfection, the expression of recombinant genes, and the secretome profile. Later, we applied an in vivo Matrigel plug assay to assess engineered UCB-MC's angiogenic potential. We conclude that hUCB-MCs can be efficiently modified simultaneously with several adenoviral vectors. Modified UCB-MCs overexpress recombinant genes and proteins. Genetic modification of cells with recombinant adenoviruses does not affect the profile of secreted pro- and anti-inflammatory cytokines, chemokines, and growth factors, except for an increase in the synthesis of recombinant proteins. hUCB-MCs genetically modified with therapeutic genes induced the formation of new vessels. An increase in the expression of endothelial cells marker (CD31) was revealed, which correlated with the data of visual examination and histological analysis. The present study demonstrates that gene-engineered UCB-MC can be used to stimulate angiogenesis and possibly treat cardiovascular disease and diabetic cardiomyopathy.


Assuntos
Células Endoteliais , Sangue Fetal , Humanos , Leucócitos Mononucleares
15.
Biomedicines ; 11(2)2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36831162

RESUMO

In recent years, adoptive cell therapy has gained a new perspective of application due to the development of technologies and the successful clinical use of CAR-T cells for the treatment of patients with malignant B-cell neoplasms. However, the efficacy of CAR-T therapy against solid tumor remains a major scientific and clinical challenge. In this work, we evaluated the cytotoxicity of 2nd generation CAR-T cells against modified solid tumors cell lines-lung adenocarcinoma cell line H522, prostate carcinoma PC-3M, breast carcinoma MDA-MB-231, and epidermoid carcinoma A431 cell lines transduced with lentiviruses encoding red fluorescent protein Katushka2S and the CD19 antigen. A correlation was demonstrated between an increase in the secretion of proinflammatory cytokines and a decrease in the confluence of tumor cells' monolayer. The proposed approach can potentially be applied to preliminarily assess CAR-T cell efficacy for the treatment of solid tumors and estimate the risks of developing cytokine release syndrome.

16.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36834957

RESUMO

Multiple sclerosis (MS) is a debilitating chronic disease of unknown etiology. There are limited treatment options due to an incomplete understanding of disease pathology. The disease is shown to have seasonal exacerbation of clinical symptoms. The mechanisms of such seasonal worsening of symptoms remains unknown. In this study, we applied targeted metabolomics analysis of serum samples using LC-MC/MC to determine seasonal changes in metabolites throughout the four seasons. We also analyzed seasonal serum cytokine alterations in patients with relapsed MS. For the first time, we can demonstrate seasonal changes in various metabolites in MS compared to the control. More metabolites were affected in MS in the fall season followed by spring, while summer MS was characterized by the smallest number of affected metabolites. Ceramides were activated in all seasons, suggesting their central role in the disease pathogenesis. Substantial changes in glucose metabolite levels were found in MS, indicating a potential shift to glycolysis. An increased serum level of quinolinic acid was demonstrated in winter MS. Histidine pathways were affected, suggesting their role in relapse of MS in the spring and fall. We also found that spring and fall seasons had a higher number of overlapping metabolites affected in MS. This could be explained by patients having a relapse of symptoms during these two seasons.


Assuntos
Esclerose Múltipla , Humanos , Estações do Ano , Citocinas , Doença Crônica , Recidiva
17.
Int J Mol Sci ; 24(4)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36835039

RESUMO

Sphingolipidoses are defined as a group of rare hereditary diseases resulting from mutations in the genes encoding lysosomal enzymes. This group of lysosomal storage diseases includes more than 10 genetic disorders, including GM1-gangliosidosis, Tay-Sachs disease, Sandhoff disease, the AB variant of GM2-gangliosidosis, Fabry disease, Gaucher disease, metachromatic leukodystrophy, Krabbe disease, Niemann-Pick disease, Farber disease, etc. Enzyme deficiency results in accumulation of sphingolipids in various cell types, and the nervous system is also usually affected. There are currently no known effective methods for the treatment of sphingolipidoses; however, gene therapy seems to be a promising therapeutic variant for this group of diseases. In this review, we discuss gene therapy approaches for sphingolipidoses that are currently being investigated in clinical trials, among which adeno-associated viral vector-based approaches and transplantation of hematopoietic stem cells genetically modified with lentiviral vectors seem to be the most effective.


Assuntos
Doença de Gaucher , Esfingolipidoses , Doença de Tay-Sachs , Humanos , Esfingolipídeos/metabolismo , Esfingolipidoses/genética , Terapia Genética
18.
Int J Mol Sci ; 24(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36768737

RESUMO

Melanoma is one of the most aggressive and therapy-resistant types of cancer, the incidence rate of which grows every year. However, conventional methods of chemo- and radiotherapy do not allow for completely removing neoplasm, resulting in local, regional, and distant relapses. In this case, adjuvant therapy can be used to reduce the risk of recurrence. One of the types of maintenance cancer therapy is cell-based immunotherapy, in which immune cells, such as T-cells, NKT-cells, B cells, NK cells, macrophages, and dendritic cells are used to recognize and mobilize the immune system to kill cancer cells. These cells can be isolated from the patient's peripheral blood or biopsy material and genetically modified, cultured ex vivo, following infusion back into the patient for powerful induction of an anti-tumor immune response. In this review, the advantages and problems of the most relevant methods of cell-based therapy and ongoing clinical trials of adjuvant therapy of melanoma are discussed.


Assuntos
Melanoma , Recidiva Local de Neoplasia , Humanos , Melanoma/tratamento farmacológico , Terapia Combinada , Células Matadoras Naturais , Imunoterapia/métodos
19.
Curr Issues Mol Biol ; 45(1): 571-592, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36661524

RESUMO

Tumor-necrosis-factor-associated apoptosis-inducing ligand (TRAIL) is one of the most promising therapeutic cytokines that selectively induce apoptosis in tumor cells. It is known that membrane vesicles (MVs) can carry the surface markers of parental cells. Therefore, MVs are of interest as a tool for cell-free cancer therapy. In this study, membrane vesicles were isolated from TRAIL-overexpressing mesenchymal stem cells using cytochalasin B treatment (CIMVs). To evaluate the antitumor effect of CIMVs-TRAIL in vivo, a breast cancer mouse model was produced. The animals were intratumorally injected with 50 µg of native CIMVs or CIMVs-TRAIL for 12 days with an interval of two days. Then, tumor growth rate, tumor necrotic area, the expression of the apoptosis-related genes CASP8, BCL-2, and BAX and the level of CASP8 protein were analyzed. A 1.8-fold increase in the CAS8 gene mRNA and a 1.7-fold increase in the CASP8 protein level were observed in the tumors injected with CIMVs-TRAIL. The expression of the anti-apoptotic BCL-2 gene in the CIMV-TRAIL group remained unchanged, while the mRNA level of the pro-apoptotic BAX gene was increased by 1.4 times, which indicated apoptosis activation in the tumor tissue. Thus, CIMVs-TRAIL were able to activate the extrinsic apoptosis pathway and induce tumor cell death in the breast cancer mouse model.

20.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36674534

RESUMO

Hemorrhagic fever with renal syndrome (HFRS) remains a prevalent zoonosis in the Republic of Tatarstan (RT), Russian Federation. Puumala orthohantavirus (PUUV), carried by bank voles (Myodes glareolus), is the principal zoonotic pathogen of HFRS in the RT. In this study, we sought to demonstrate the similarity of the PUUV genetic sequences detected in HFRS case patients and bank vole samples previously collected in some areas of the RT. Furthermore, we intended to identify the reassortant PUUV genomes and locate a potential site for their emergence. During 2019 outbreaks, the PUUV genome sequences of the S and M segments from 42 HFRS cases were analysed and compared with the corresponding sequences from bank voles previously trapped in the RT. Most of the PUUV strains from HFRS patients turned out to be closely related to those isolated from bank voles captured near the site of the human infection. We also found possible reassortant PUUV genomes in five patients while they were absent in bank voles. The location of the corresponding HFRS infection sites suggests that reassortant PUUV genomes could emerge in the bank voles that inhabit the forests on the watershed between the Kazanka River and Myosha River. These findings could facilitate the search for the naturally occurring reassortants of PUUV in bank vole populations.


Assuntos
Febre Hemorrágica com Síndrome Renal , Virus Puumala , Animais , Humanos , Febre Hemorrágica com Síndrome Renal/epidemiologia , Virus Puumala/genética , Zoonoses , Florestas , Arvicolinae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...